ハンディーキャップ意味

<ウェブサイト名>

<現在の時刻>

出典: 標準

Support Kyushu U 日本語 ENGLISH Prospective students Current students Companies & researchers Alumni Crisis Management News Events About Office of the President University Overview Kyushu U Connect Fast Facts Public Relations Featured Academics Schools & Centers The Global University Project Alumni Resources Donation Activities and Initiatives Future Plans University Facilities Academics Faculty of Arts and Science Schools Distinctive Education Programs Double Degree Programs Student Exchange Programs Short-term Study Programs The 3 Policies: Diploma, Curriculum, and Admissions Course Registration Academic Calendar Admissions Undergraduate Admissions Graduate Admissions Tuition, Fees & Scholarships Information for International Students Campus Life Facilities and Healthcare Extracurricular / Student-Led Activities Careers & Employment Procedures Contact Information for Consultations Research Research at Kyushu University Academic Staff Educational and Research Activities Database Research Activity Support Industry-University -Government Collaboration Support Research Centers and Projects Framework to Support Collaborated Research Research Integrity 日本語 ENGLISH News Topics Features Research Close-Up Notices Important Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Events Event Calendar Categories Public Seminar Lecture, etc. Exhibition Other Place Ito Campus Hakozaki Satellite Hospital Campus Chikushi Campus Ohashi Campus Beppu Campus Off Campus About Office of the President Message from the President Kyushu University VISION 2030 Biography Honorary Doctorates History of the Presidency Kyushu U Connect University Overview Organization Charter Presidential Selection Regulations and Policies History Future Plans Mid-Term Objectives and Plans Public Relations Publications Press Releases Promotional Videos University logomark List of Social Media Accounts Virtual Backgrounds Virtual Backgrounds (Archive) Featured Academics Campus Relocation Ceremony to Commemorate Completion of Ito Campus University Facilities Alumni Resources Alumni Associations Donation Donations to Schools, Graduate Schools, and Researchers, etc. Activities and Initiatives Promoting Diversity, Equity, and Inclusion QS-APPLE 2019 Response to the 2016 Kumamoto Earthquake Schools & Centers Research Institutes Centers for Common Education and Research Organizations and Offices Hospitals Libraries Museums Others Academics Faculty of Arts and Science Schools Educational and Research Course The 3 Policies Academic Calendar Course Registration Curriculum Registration / Syllabuses Distinctive Education Programs Program for Leading Graduate Schools Admissions Undergraduate Admissions Enrolling in Undergraduate School Applicants with Disabilities Graduate Admissions Applicants with Disabilities Enrolling as a Research Student Tuition, Fees, & Scholarships Tuition and Fees Enrollment Fee Exemption/Deferment and Tuition Fee Exemption for Newly-enrolled Students Scholarships Payment of tuition Tuition Fee Exemption, Enrollment Fee Exemption/Deferment Financial Aid Double Degree Programs Student Exchange Programs Campus Life Facilities and Healthcare Student Facilities Dormitories Healthcare Personal Accident Insurance for Students/ Liability Insurance Careers & Employment New Information How to use Job and Career Support System Career Consulting Job Hunting Support for International Students Recruitment of International Students Extracurricular / Student-Led Activities Procedures Certificates National Pension System for Students Contact Information for Consultations One-Stop Consultation Service Research Research at Kyushu University Humanities and Social Sciences Art and Design Life and Health Math and Data Physics and Chemistry Materials Technology Environment and Sustainability Research Close-Up Research Centers and Projects Next-Generation Fuel Cell Research Center (NEXT-FC) Research Activity Support On-campus Consultation Research Strategy Promotion Support for Research Funding and Grants Support for Other Research Activities Industry - University - Government Collaboration Support Technological Consultation Intellectual Property Management and Use Joint Research/Sponsored Research Comprehensive Collaboration Joint Research Department Research Integrity Framework to Support Collaborative Research International ・Prospective students ・Current students ・Companies & researchers ・Alumni ・Support Kyushu U Crisis Management ・Contact Us ・Visit ・Career ・Disclaimer & Copyright ・Privacy Policy ・Sitemap 研究成果 Research Results TOP News Research Results How neurons compete to lose their link How neurons compete to lose their link Researchers detail the mechanism of how synapses compete with each other, and how weak and noisy synapses are eliminated during development 2023.06.08 Research ResultsLife & Health Growing, competing, strengthening, and pruning. In early development, neurons called mitral cells grow multiple branches to connect with multiple glomeruli. Like a bonsai, as development progresses branches get strengthen and pruned. But while researchers investigated closely the mechanism of branch strengthening, how pruning was induced remained under-studied. Kyushu University researchers found that when mitral cells receive the neurotransmitter glutamate, the subsequent signal triggers local suppression of RhoA, protecting that dendrite. At the same time, the depolarization activates the pruning machinery—controlled by RhoA—in dendrites that did not receive the glutamate input. The winner dendrite takes all. (Kyushu University/Imai Lab) Fukuoka, Japan—Researchers at Kyushu University have uncovered the mechanisms of a fundamental yet critically under-looked phase in brain development: synaptic pruning. Using mouse mitral cells—a type of neuron in the olfactory system—the team found that when neurons receive a neurotransmitter signal, the receiving dendrite is protected through a series of chemical pathways. At the same time, the depolarization triggers other dendrites of the same cell to go through a different pathway that promotes pruning. Their study was published in the journal Developmental Cell. How neurons connect and remodel themselves is a fundamental question in neurobiology. The key concept behind proper networking is in neurons forming and strengthening connection with other neurons while pruning excessive and incorrect ones. "A common phrase in neural circuit remodeling is 'fire together wire together' and 'out of sync, lose your link.' The former describing how neurons that pass signals between each other tend to strengthen connections, whereas the latter explains that without said signaling that connection diminishes," explains Professor Takeshi Imai from Kyushu University's Faculty of Medical Sciences, who led the study. "It’s a refining process that is fundamental for proper brain maturation." Over the decades, researchers—including Prof Imai—have explored the fundamental process of how neurons form and strengthen their connections. However, there had been one major gap in the process that few people were examining: how the connections are eliminated. "The elimination of neuronal connections, what we call pruning, was something everybody in the field knew about and observed. But if you look at the literature, there was a lack of study on the exact mechanism that drove the process," explains first author Satoshi Fujimoto. Elimination of connections happen everywhere in the nervous system, for example in neuromuscular junctions, the neurons that send signals to your muscles to move. At first, the muscle fibers receive inputs from many motor neurons. As you grow, these connections are finetuned, where some are strengthened, and others are eliminated, until just one neuron connects to one muscle fiber. It is why you have awkward motor control and coordination at an early age. "We decided to investigate what exactly happens in neurons during remodeling, so, we looked into using mouse mitral cells, a type of cell housed in the olfactory bulb, the brain center involved in our sense of smell. In adults, mitral cells have a single connection to a signaling waystation called the glomerulus. But in early development mitral cells send branches into many glomeruli," states Fujimoto. "As time progresses, these branches get pruned to leave a single strong connection. In the end, the mitral cells can sniff out only a specific type of smell." First, the team found that spontaneous waves of the neurotransmitter glutamate in the olfactory bulb facilitate dendrite pruning. The team then focused on the mitral cell's inner signaling pathways. What they found was a unique protection/punishment machinery that would strengthen certain connections and kickoff the pruning of others. "We found that in the mitral cells it was the signaling from glutamate that was essential for pruning. When glutamate binds to its receptor NMDAR in a dendrite, it suppresses the pruning machinery molecule called RhoA," continues Fujimoto. "This 'save-me' signal is important to protect it from pruning." Upon the glutamate input, the mitral cell also depolarizes and fire a signal. The team also found that depolarization triggers the activation of RhoA in other dendrites of the same cell, and kicking off the pruning process. Simply put, the dendrite that receives the direct glutamate signal is protected, while the other dendrites get pruned. "This 'punishment' signal for synapse elimination only acts on non-protected synapses, and it explains how only a strong connection becomes the winner and all the others mediating weak and noisy inputs become the losers," Imai explains. The team's findings reveal new information of an over-looked but critical phase in neural development. "Proper pruning of neuronal connections is just as important as the strengthening of the network. If it goes awry in either direction it can lead to different kinds of neurophysiological disorders. Too few connections have been linked to schizophrenia, whereas too many connections have been found in people with autism spectrum disorder, for example." says Imai. "To understand these sorts of pathologies we need to look carefully at every step of development." Single dendrite formation process in developing mitral cells. From the moment mice are born, their mitral cells extend multiple dendrites into multiple glomeruli. They form branches and excitatory synapses in the glomerulus at around day three after birth. By day six, they form single dendrites through selective pruning. This makes it possible to receive information from only one type of olfactory receptor (odor sensor), which is the basis of odor discrimination. (Kyushu University/Imai Lab) ### For more information about this research, see "Activity-dependent local protection and lateral inhibition control synaptic competition in developing mitral cells in mice," Satoshi Fujimoto, Marcus N. Leiwe, Shuhei Aihara, Richi Sakaguchi, Yuko Muroyama, Reiko Kobayakawa, Ko Kobayakawa, Tetsuichiro Saito, and Takeshi Imai Developmental Cell, https://doi.org/10.1016/j.devcel.2023.05.004 Research-related inquiries Takeshi Imai, ProfessorDepartment of Basic Medicine, Faculty of Medical Sciences Contact information can also be found in the full release Kyushu U Connect Tweet Back to the list TOP News Research Results How neurons compete to lose their link Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Year 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 九州大学Kyushu University744 Motooka Nishi-ku Fukuoka 819-0395 Contact Us | Visit Career Academics Disclaimer & Copyright Admissions News Privacy Policy Research Events Sitemap Campus Life About COPYRIGHT © KYUSHU UNIVERSITY. ALL RIGHTS RESERVED.

ライブカジノ - 本物のディーラーとプレイ beebet出金銀行 【コラム】大谷巻き込む不祥事、スポーツ賭博の教訓に フレンドリーサッカークラブ
Copyright ©ハンディーキャップ意味 The Paper All rights reserved.